

ECE317 : Feedback and Control

Lecture : Routh-Hurwitz stability criterion Examples

Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University

Course roadmap

Matlab & PECS simulations & laboratories

• **BIBO** (Bounded-Input-Bounded-Output) **stability** *Any bounded input generates a bounded output.*

Asymptotic stability

Any ICs generates y(t) converging to zero.

Stability summary (review)

Let *si* be poles of *G(s)*. Then, *G(s)* is ...

- (BIBO, asymptotically) stable if Re(si)<0 for all i.
- marginally stable if
 - Re(si)<=0 for all i, and
 - simple pole for *Re(si)=0*
- unstable if it is neither stable nor marginally stable.

Im ↑					
Stable region	Unstable region				
Stable region	Unstable region	Re			

Routh-Hurwitz criterion (review)

- This is for LTI systems with a *polynomial* denominator (without sin, cos, exponential etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots.
- No proof is provided in any control textbook.

Routh array (review)

$$s^n$$
 a_n
 a_{n-2}
 a_{n-4}
 a_{n-6}
 ...

 s^{n-1}
 a_{n-1}
 a_{n-3}
 a_{n-5}
 a_{n-7}
 ...

 s^{n-2}
 b_1
 b_2
 b_3
 b_4
 ...

 s^{n-3}
 c_1
 c_2
 c_3
 c_4
 ...

 :
 :
 :
 :
 :
 :

 s^2
 k_1
 k_2
 $a_ns^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$
 s^0
 m_1
 ...
 ...

:

$$Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

6

Routh array (How to compute the third row)

s^n	a_n	a_{n-2}	a_{n-4}	a_{n-6}
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	$a_{n-7} \cdots$
s^{n-2}	b_1	<i>b</i> ₂	<i>b</i> 3	$b_4 \cdots$
s^{n-3}	c_1	<i>c</i> ₂	Сз	<i>c</i> ₄ ····
:	:	:	Г	$a_{m} - 2a_{m} - 1 - a_{m}a_{m} - 3$
<i>s</i> ²	k_1	k_2		$b_1 = \frac{a_{n-2}a_{n-1}a_{n-3}}{a_{n-1}}$
s^1	l_1			$b_{2} = \frac{a_{n-4}a_{n-1} - a_{n}a_{n-5}}{a_{n-5}}$
s^0	m_1			a_{n-1}
	1			

Routh array (How to compute the fourth row)

Routh-Hurwitz criterion

s^n	$ a_n $	a_{n-2}	a_{n} -	-4	a_{n-6}	• • •		
s^{n-1}	a_{n-1}	a_{n-3}	a_{n} -	-5	a_{n-7}	• • •		
s^{n-2}	b_1	b_2	b_3		<i>b</i> 4	• • •		
s^{n-3}	c_1	c_2	c_{3}		<i>c</i> 4	• • •		
:	:	÷	Г					
<i>s</i> ²	k_1	k_2		The number of roots in the open right half-plane is equal to				
s^1	l_1							
s^0	m_1			<i>the number of sign changes in the first column of Routh array.</i>				

9

$$Q(s) = s^{5} + 2s^{4} + 2s^{3} + 4s^{2} + 11s + 10$$

Routh array

$$s^5$$
 1
 2
 11

 s^4
 2
 4
 10

 s^3
 $\chi^{\mathcal{E}}$
 6
 -

 s^2
 $\frac{4\varepsilon - 12}{\varepsilon}$
 10
 -

 s^1
 ≈ 6
 -
 -

 s^0
 10
 -
 -

If 0 appears in the first column of a nonzero row in Routh array, replace it with a small positive number. In this case, Q has some roots in RHP.

Two sign changes in the first column

Two roots in RHP

$$\varepsilon
ightarrow rac{4arepsilon-12}{\displaystyle \overbrace{<0}^{arepsilon}}
ightarrow 6$$

10

$$Q(s) = s^4 + s^3 + 3s^2 + 2s + 2$$

Routh array

If zero row appears in Routh array, Q has roots either on the imaginary axis or in RHP.

No sign changes in the first column No roots in RHP

Take derivative of an auxiliary polynomial (which is a factor of Q(s)) $s^2 + 2$ But some roots are on imag. axis.

$$Q(s) = s^3 + s^2 + s + 1 \ (= (s+1)(s^2+1))$$

Routh array

No sign changes in the first column

No root in OPEN(!) RHP

 $Q(s) = s^{5} + s^{4} + 2s^{3} + 2s^{2} + s + 1 \ (= (s+1)(s^{2}+1)^{2})$

$$Q(s) = s^4 - 1 \ (= (s+1)(s-1)(s^2+1))$$

One sign changes in the first column

Notes on Routh-Hurwitz criterion

- Advantages
 - No need to explicitly compute roots of the polynomial.
 - High order Q(s) can be handled by hand calculations.
 - Polynomials including undetermined parameters (plant and/or controller parameters in feedback systems) can be dealt with.
 - Root computation does not work in such cases!
- Disadvantage
 - Exponential functions (delay) cannot be dealt with.

• Example:
$$Q(s) = e^{-s} + s^2 + s + 1$$

$$Q(s) = s^3 + 3Ks^2 + (K+2)s + 4$$

Find the range of K s.t. Q(s) has all roots in the left half plane. (Here, K is a design parameter.)

- Design *K(s)* that stabilizes the closed-loop system for the following cases.
 - K(s) = K (constant, P controller)
 - K(s) = K_P+K_I/s (PI (Proportional-Integral) controller)

Example 7: *K(s)=K*

• Characteristic equation

$$1 + K \frac{2}{s^3 + 4s^2 + 5s + 2} = 0$$

$$s^3 + 4s^2 + 5s + 2 + 2K = 0$$

• Routh array

Example 7: K(s)=KP+KI/s

• Characteristic equation

$$1 + \left(K_P + \frac{K_I}{s}\right) \frac{2}{s^3 + 4s^2 + 5s + 2} = 0$$

$$s^4 + 4s^3 + 5s^2 + (2 + 2K_P)s + 2K_I = 0$$

• Routh array

 $(*) \Leftrightarrow (1 + K_P)(9 - K_P) - 8K_I > 0$

• Determine the range of K that stabilize the closedloop system.

Example 8 (cont'd)

Characteristic equation

Example 8 (cont'd)

• Routh array $s^3 + 5s^2 + 7s + K = 0$

If K=35, the closed-loop system is marginally stable.
 Output signal will oscillate with frequency corresponding to 1 1 1 1 1 1

$$\frac{1}{5s^2 + 35} = \frac{1}{5} \cdot \frac{1}{s^2 + 7} = \frac{1}{5} \cdot \frac{1}{s^2 + (\sqrt{7})^2}$$

Summary

- Examples for Routh-Hurwitz criterion
 - Cases when zeros appear in Routh array
 - P controller gain range for stability
 - PI controller gain range for stability
- Next
 - Frequency response